
1 . 1

HIGH PERFORMANCE STORAGE
DEVICES IN KERNEL

E8 Storage

By / Evgeny Budilovsky @budevg

12 Jan 2016

http://budevg.github.io/
https://twitter.com/budevg

2 . 1

STORAGE STACK 101

2 . 2

APPLICATION
Application invokes system calls (read, write, mmap) on
files

Block device files - direct access to block device
Regular files - access through specific file system (ext4,
btrfs, etc.)

2 . 3

FILE SYSTEM
system calls go through VFS layer
specific file system logic applied
read/write operations translated into read/write of
memory pages
Page cache involved to reduce disk access

2 . 4

BIO LAYER (STRUCT BIO)
File system constructs BIO unit which is the main unit of IO
Dispatch bio to block layer / bypass driver (make_request_fn
driver)

2 . 5

BLOCK LAYER (STRUCT REQUEST)
Setup struct request and move it
to request queue (single queue
per device)
IO scheduler can delay/merge
requests
Dispatch requests

To hardware drivers
(request_fn driver)
To scsi layer (scsi devices)

SCSI LAYER (STRUCT SCSI_CMND)
translate request into
scsi command
dispatch command
to low level scsi
drivers

2 . 6

WRITE (O_DIRECT)
Application
perf record ­g dd if=/dev/zero of=1.bin bs=4k \
 count=1000000 oflag=direct
...
perf report ­­call­graph ­­stdio

Submit into block queue (bypass page cache)
write
 system_call_fastpath
 sys_write
 vfs_write
 new_sync_write
 ext4_file_write_iter
 __generic_file_write_iter
 generic_file_direct_write
 ext4_direct_IO
 ext4_ind_direct_IO
 __blockdev_direct_IO
 do_blockdev_direct_IO
 submit_bio
 generic_make_request

2 . 7
2 . 8

after io scheduling submit to scsi layer and to the hardware
 ...
io_schedule
 blk_flush_plug_list
 queue_unplugged
 __blk_run_queue
 scsi_request_fn
 scsi_dispatch_cmd
 ata_scsi_queuecmd

2 . 8

2 . 9

WRITE (WITH PAGE CACHE)
Application
perf record ­g dd if=/dev/zero of=1.bin bs=4k \
 count=1000000
...
perf report ­­call­graph ­­stdio

write data into page cache
write
 system_call_fastpath
 sys_write
 vfs_write
 new_sync_write
 ext4_file_write_iter
 __generic_file_write_iter
 generic_perform_write
 ext4_da_write_begin
 grab_cache_page_write_begin
 pagecache_get_page
 __page_cache_alloc
 alloc_pages_current

2 . 10

asynchronously flush dirty pages to disk

kthread
 worker_thread
 process_one_work
 bdi_writeback_workfn
 wb_writeback
 __writeback_inodes_wb
 writeback_sb_inodes
 __writeback_single_inode
 do_writepages
 ext4_writepages
 mpage_map_and_submit_buffers
 mpage_submit_page
 ext4_bio_write_page
 ext4_io_submit
 submit_bio
 generic_make_request
 blk_queue_bio

2 . 10

3 . 1

HIGH PERFORMANCE BLOCK
DEVICES

3 . 2

CHANGES IN STORAGE WORLD
Rotational devices (HDD)
"hundreds" of IOPS , "tens" of
milliseconds latency
Today, flash based devices (SSD)
"hundreds of thousands" of IOPS,
"tens" of microseconds latency
Large internal data parallelism
Increase in cores and NUMA
architecture
New standardized storage
interfaces (NVME)

3 . 3

NVM EXPRESS

3 . 4

HIGH PERFORMANCE STANDARD

Standardized interface for PCIe
SSDs
Designed from the ground up to
exploit

Low latency of today’s PCIe-
based SSD’s
Parallelism of today’s CPU’s

BEATS AHCI STANDARD FOR SATA HOSTS
 AHCI NVME

Maximum Queue
Depth

1 command queue 32 commands
per Q

64K queues 64K
Commands per Q

Un-cacheable register
accesses (2K cycles

6 per non-queued command 9 per
queued command

2 per command

MSI-X and Interrupt
Steering

Single interrupt; no steering 2K MSI-X interrupts

Parallelism & Multiple
Threads

Requires synchronization lock to
issue command

No locking

Efficiency for 4KB
Commands

Command parameters require two
serialized host DRAM fetches

Command
parameters in one
64B fetch

3 . 53 . 6

IOPS

consumer grade NVME SSDs (enterprise grade have much
better performance)
100% writes less impressive due to NAND limitation

3 . 7

BANDWIDTH

3 . 8

LATENCY

4 . 1

THE OLD STACK DOES NOT SCALE

4 . 2

THE NULL_BLK EXPERIMENT
Jens Axboe (Facebook)
null_blk configuration

queue_mode=1(rq) completion_nsec=0
irqmode=0(none)

fio
Each thread does pread(2), 4k, randomly, O_DIRECT

Each added thread alternates between the two available
NUMA nodes (2 socket system, 32 threads)

4 . 3

LIMITED PERFORMANCE

4 . 4

PERF
Spinlock
contention

4 . 5

PERF
40% from sending request (blk_queue_bio)
20% from completing request (blk_end_bidi_request)
18% sending bio from the application to the bio layer
(blk_flush_plug_list)

4 . 6

OLD STACK HAS SEVERE SCALING ISSUES

4 . 7

PROBLEMS
Good scalability before block layer (file system, page
cache, bio)
Single shared queue is a problem
We can use bypass mode driver which will work with bio's
without getting into shared queue.
Problem with bypass driver: code duplication

5 . 1

BLOCK MULTI-QUEUE TO THE
RESCUE

5 . 2

HISTORY
Prototyped in 2011
Paper in SYSTOR 2013
Merged into linux 3.13 (2014)
A replacement for old block layer with different driver API

Drivers gradually converted to blk-mq (scsi-mq, nvme-
core, virtio_blk)

5 . 3

ARCHITECTURE - 2 LAYERS OF QUEUES
Application works with per-
CPU software queue
Multiple software queues
map into hardware queues
Number of HW queues is
based on number of HW
contexts supported by
device
Requests from HW queue
submitted by low level
driver to the device

ARCHITECTURE - ALLOCATION AND TAGGING
IO tag

Is an integer value that uniquely identifies IO submitted
to hardware
On completion we can use the tag to find out which IO
was completed
Legacy drivers maintained their own implementation
of tagging

With block-mq, requests allocated at initialization time
(based on queue depth)
Tag and request allocations combined
Avoids per request allocations in driver and tag
maintenance

5 . 45 . 5

ARCHITECTURE - I/O COMPLETIONS
Generally we want completions to be as local as possible
Use IPIs to complete requests on submitting node
Old block layer was using software interrupts instead of
IPIs
Best case there is an SQ/CQ pair for each core, with MSI-X
interrupt setup for each CQ, steered to the relevant core
IPIs used when there aren't enough interrupts/HW queues

5 . 6

NULL_BLK EXPERIMENT AGAIN
null_blk configuration

queue_mode=2(multiqueue) completion_nsec=0
irqmode=0(none) submit_queues=32

fio
Each thread does pread(2), 4k, randomly, O_DIRECT

Each added thread alternates between the two available
NUMA nodes (2 socket system, 32 threads)

5 . 7

SUCCESS

5 . 8

WHAT ABOUT HARDWARE WITHOUT MULTI
QUEUE SUPPORT

Same null_blk setup
1/2/n hw queues in blk-mq
mq-1 and mq-2 so close
since we have 2 sockets
system
Numa issues eliminated
once we have queue per
numa node

CONVERSION PROGRESS
mtip32xx (micron SSD)
NVMe
virtio_blk, xen block
driver
rbd (ceph block)
loop
ubi
SCSI (scsi-mq)

5 . 96 . 1

SUMMARY
Storage device performance has accelerated from
hundreds of IOPS to hundreds thousands of IOPS
Bottlenecks in software gradually eliminated by
exploiting concurrency and introducing lock-less
architecture
blk-mq is one example

Questions ?

7 . 1

REFERENCES
1.

2.
3.
4.
5.
6.
7.

Linux Block IO: Introducing Multi-queue SSD Access on
Multi-core Systems
The Performance Impact of NVMe and NVMe over Fabrics
Null block device driver
blk-mq: new multi-queue block IO queueing mechanism
fio
perf
Solving the Linux storage scalability bottlenecks - by Jens
Axboe

http://kernel.dk/blk-mq.pdf
https://www.brighttalk.com/webcast/663/132761
https://www.kernel.org/doc/Documentation/block/null_blk.txt
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
http://linux.die.net/man/1/fio
https://perf.wiki.kernel.org/index.php/Main_Page
https://kernel-recipes.org/en/2015/talks/solving-the-linux-storage-scalability-bottlenecks

