HIGH PERFORMANCE STORAGE
DEVICES IN KERNEL

E8 Storage
By Evgeny Budilovsky y @budevg

12 Jan 2016

http://budevg.github.io/
https://twitter.com/budevg

STORAGE STACK 101

APPLICATION

e Application invokes system calls (read, write, mmap) on

HEES
m Block device files - direct access to block device

= Regular files - access through specific file system (ext4,
btrfs, etc.)

Applications (processes)

—
o~
il
g
s)
=
IS
i

read/write operations translated into read/write of

FILE SYSTEM

system calls go through VFS layer
specific file system logic applied

memory pages
Page cache involved to reduce disk access

Direct I/O
(O_DIRECT)

VFS
Block-based FS | 'Network FS

(ext2 (ext3) [extd) (xfs |
(btrfs) (ifs) (is09660)
Stackable FS

Pseudo FS | Special
purpose FS

userspace (e.g. sshfs)
network

BIO LAYER (STRUCT BIO)

e File system constructs BIO unit which is the main unit of 10
e Dispatch bio to block layer / bypass driver (make_request_fn
driver)

struct bio

Direct I/O - sector on disk
(O_DIRECT) - sector cnt

- bio_vec cnt
- bio“vec index
- bio"vec list

hooked in device drivers
(they hook in like stacked
devices do)

Block Layer

BLOCK LAYER (STRUCT REQUEST)

e Setup struct request and move it
to request queue (single queue
per device)

e |0 scheduler can delay/merge e e
requests Lﬁi@L

e Dispatch requests LY
= To hardware drivers I

(request_fn driver) e
= To scsi layer (scsi devices)

Block Layer

(deaciing

Request
based drivers

SCSI LAYER (STRUCT SCSI_CMND)

e translate requestinto

scsi command

e dispatch command
to low level scsi
drivers

SCSI mid layer

scsi-mq

SCSl upper level drivers

(/dev/sda) (/dev/sd*) (-)
(/dev/sr* || /dev/st* |

SCSI low level drivers
(libata) (megaraid_sas (qgla2xxx) (pm8001)

(ahci) (ata_piix) (-] aacraid ‘mpt3sas

(HDD) (SSD{"DVD_"} LSI]
drive / \RAID J

PMC-Sierra
HBA
‘Adaptec LSI 12Gbs
RAID | SAS HBA,

Physical devices

WRITE (O_DIRECT)

Application
perf record -g dd if=/dev/zero of=1.bin bs=4k \
count=1000000 oflag=direct

perf report --call-graph --stdio

Submit into block queue (bypass page cache)
write
system_call_ fastpath
sys_write
vfs_write
new_sync_write
ext4_file_write_iter
__generic_file_write_iter
generic_file_direct_write
ext4_direct_IO
ext4_ind_direct_IO
__blockdev_direct_IO
do_blockdev_direct_1IO0
submit_bio
generic_make_request

.6

.7

WRITE (WITH PAGE CACHE)

Application
perf record -g dd if=/dev/zero of=1.bin bs=4k \
count=1000000

perf report --call-graph --stdio

write data into page cache
write
system_call_fastpath
sys_write
vfs_write
new_sync_write
ext4_file_write_iter
__generic_file_write_iter
generic_perform_write
ext4_da_write_begin
grab_cache_page_write_begin
pagecache_get_page
__page_cache_alloc
alloc_pages_current

asynchronously flush dirty pages to disk

kthread
worker_thread
process_one_work
bdi_writeback_workfn
wb_writeback
__writeback_inodes_wb
writeback_sb_inodes
__writeback_single_inode
do_writepages
ext4_writepages
mpage_map_and_submit_buffers
mpage_submit_page
ext4_bio_write_page
ext4_io_submit
submit_bio
generic_make_request
blk_queue_bio

HIGH PERFORMANCE BLOCK
DEVICES

CHANGES IN STORAGE WORLD

Rotational devices (HDD)
"hundreds" of IOPS , "tens" of
milliseconds latency

Today, flash based devices (SSD)
"hundreds of thousands" of IOPS,
"tens" of microseconds latency
Large internal data parallelism
Increase in cores and NUMA —_
architecture M= D =M
New standardized storage e e
interfaces (NVME)

Local Memory Access

.2

NVM EXPRESS

HIGH PERFORMANCE STANDARD

e Standardized interface for PCle
SSDs

e Designed from the ground up to
exploit
= Low latency of today’s PCle-

pased SSD’s

= Parallelism of today’s CPU’s M
EXPRESS

BEATS AHCI STANDARD FOR SATA HOSTS

AHCI

NVME

Maximum Queue
Depth

1 command queue 32 commands
per Q

64K queues 64K
Commands per Q

Un-cacheable register
accesses (2K cycles

6 per non-queued command 9 per
queued command

2 per command

MSI-X and Interrupt
Steering

Single interrupt; no steering

2K MSI-X interrupts

Parallelism & Multiple Requires synchronization lock to No locking
Threads issue command

Efficiency for 4KB Command parameters requiretwo Command
Commands serialized host DRAM fetches parameters in one

64B fetch

|IOPS

4K Random Workloads

M PCle/NVMe M SAS 12Gb/s [SATA 6Gb/s HE

Ll

100% Read 0% Read

e consumer grade NVME SSDs (enterprise grade have much
better performance)
e 100% writes less impressive due to NAND limitation

3.

6

BANDWIDTH

Sequential Workloads

M PCle/NVMe H SAS 12Gb/s

L SATA 6Gb/s HE

100% Read 0% Read

7

A
=
=
Q
¥
=]
[=
=
=
=
.
=
=
2
m
-l
u
an
)
L
u
=
<L

Avg Latency [uS)

LATENCY

Average Latencyin pS

GGh SATA on
PCH chipset
490

6Gb SATA on

571

Lower |s Better

G6Gh SAS on 12Gh 5A5 on MVMe on CPU
(PCle Gen 3)

618 i¥. 314

.8

THE OLD STACK DOES NOT SCALE

THE NULL_BLK EXPERIMENT

Jens Axboe (Facebook)

null_blk configuration

= queue_mode=1(rq) completion_nsec=0
irgmode=0(none)

fio

= Each thread does pread(2), 4k, randomly, O_DIRECT

Each added thread alternates between the two available

NUMA nodes (2 socket system, 32 threads)

LIMITED PERFORMANCE

IOPS SQ vs. Threads

400000

300000 \/

200000

— |OPS SQ

100000

Threads

PERF

e Spinlock
contention

Samples: 165K of event ‘cycles', Event count (approx.): 110645642788
Overhead Command Shared Object

" for help on key bindings

+ 37.10% fio [kernel.kallsyms]

+ fio [kernel.kallsyms] _raw_spin_lock_irgsave
+ fio [kernel.kallsyms] _raw_spin_lock

+ fio fio clock _thread_fn

+ fio [kernel.kallsyms] kmem_cache_alloc

+ fio [kernel.kallsyms] blk_account_io_done

+ fio [kernel.kallsyms] end_cmd

+ fio [kernel.kallsyms] do_blockdev_direct_IO
+ fio [kernel.kallsyms] blk_peek_request

+ fio [kernel.kallsyms] blk _account_io_start

+ fio fio get_io u

+ fio [kernel.kallsyms] deadline _dispatch requests
B fio [kernel.kallsyms] bio_get_nr_vecs

PERF

e 40% from sending request (blk_queue_bio)

e 20% from completing request (blk_end_bidi_request)

e 18% sending bio from the application to the bio layer
(blk_flush_plug_list)

Samples: 165K of event 'cycles', Event count (approx.): 110529613446
Overhead Command Shared Object Symbol
fio [kernel.kallsyms] [k] _raw_spin_lock_irqg
- _raw_spin_lock_irg
+ 50.90% null request_ fn
+ 48.99% blk _queue_bio
fio [kernel.kallsyms] [k] raw _spin lock irqgsave

- _raw_spin lock irgsave
+ 96.91% blk _end bidi_ request
+ 2.54% do_blockdev_direct IO
fio [kernel.kallsyms] [k] raw_spin_lock
- _raw_spin lock
+ blk flush plug list
'?" for help on key bindings

OLD STACK HAS SEVERE SCALING ISSUES

Process Process

" Async/Sync “

Staging (Insertion/Merge)
Submission / Completion

Block Layer

Request Queue
Fairness /10 Scheduling

Block 10 device driver

Status / Completion interrupt

Single queue capable hardware device

PROBLEMS

Good scalability before block layer (file system, page
cache, bio)

Single shared queue is a problem

We can use bypass mode driver which will work with bio's
without getting into shared queue.

Problem with bypass driver: code duplication

BLOCK MULTI-QUEUE TO THE
RESCUE

HISTORY

Prototyped in 2011

Paperin SYSTOR 2013

Merged into linux 3.13 (2014)

A replacement for old block layer with different driver API

= Drivers gradually converted to blk-mq (scsi-mq, nvme-
core, virtio_blk)

.2

ARCHITECTURE -2 LAYERS OF QUEUES

Application works with per-
CPU software queue

Multiple software queues

map into hardware queues _._-

Number of HW queues is

based on number of HW m———
contexts supported by

device Submission / Completion Software
Requests from HW queue

submitted by low level Fairness / 10 Scheduling Hardware
driver to the device 1 Dispatch Queues

Block 10 device driver

Status / Completion interrupt

Single/Multi-queue capable hardware device

.3

ARCHITECTURE - ALLOCATION AND TAGGING

e |Otag
= |s aninteger value that uniquely identifies IO submitted
to hardware
= On completion we can use the tag to find out which 10
was completed
= | egacy drivers maintained their own implementation
of tagging
e With block-mq, requests allocated at initialization time
(based on queue depth)
e Tag and request allocations combined
e Avoids per request allocations in driver and tag
maintenance

ARCHITECTURE - 1/O COMPLETIONS

Generally we want completions to be as local as possible
Use IPIs to complete requests on submitting node

Old block layer was using software interrupts instead of
IPls

Best case there is an SQ/CQ pair for each core, with MSI-X
interrupt setup for each CQ, steered to the relevant core
IPls used when there aren't enough interrupts/HW queues

5.8

NULL_BLK EXPERIMENT AGAIN

e null_blk configuration
s queue_mode=2(multiqueue) completion_nsec=0
irgmode=0(none) submit_queues=32
e fio
= Each thread does pread(2), 4k, randomly, O_DIRECT
e Each added thread alternates between the two available
NUMA nodes (2 socket system, 32 threads)

.6

2400000

1800000

1200000

600000

IOPS MQ and IOPS SQ

SUCCESS

Threads

— |IOPS MQ
— [OPS SQ

WHAT ABOUT HARDWARE WITHOUT MULTI
QUEUE SUPPORT

Same null_blk setup

1/2/n hw queues in blk-mqg IOPS MQ and IOPS SQ

mg-1 and mg-2 so close o2
. I0PS MQ

since we have 2 sockets — oPs sa

system

Numa issues eliminated /
once we have queue per -

N S S e e e

1200000

numa node 0 .

.8

CONVERSION PROGRESS

e mtip32xx (micron SSD)
e NVMe

virtio_blk, xen block
driver

rbd (ceph block)

loop

ubi

SCSI (scsi-mq)

SUMMARY

e Storage device performance has acceleratec
hundreds of IOPS to hundreds thousands of

e Bottlenecks in software gradually eliminatec

from
OPS
by

exploiting concurrency and introducing lock-less

architecture
e blk-mq is one example

Questions ?

A

i

6.

]

=

S

REFERENCES

Linux Block 10: Introducing Multi-queue SSD Access on
Multi-core Systems
The Performance Impact of NVMe and NVMe over Fabrics

Null block device driver

blk-mq: new multi-queue block 10 queueing mechanism
fio

perf

Solving the Linux storage scalability bottlenecks - by Jens
Axboe

http://kernel.dk/blk-mq.pdf
https://www.brighttalk.com/webcast/663/132761
https://www.kernel.org/doc/Documentation/block/null_blk.txt
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
http://linux.die.net/man/1/fio
https://perf.wiki.kernel.org/index.php/Main_Page
https://kernel-recipes.org/en/2015/talks/solving-the-linux-storage-scalability-bottlenecks

